3.5.93 \(\int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx\) [493]

3.5.93.1 Optimal result
3.5.93.2 Mathematica [C] (warning: unable to verify)
3.5.93.3 Rubi [A] (verified)
3.5.93.4 Maple [B] (verified)
3.5.93.5 Fricas [C] (verification not implemented)
3.5.93.6 Sympy [F]
3.5.93.7 Maxima [F]
3.5.93.8 Giac [F]
3.5.93.9 Mupad [B] (verification not implemented)

3.5.93.1 Optimal result

Integrand size = 33, antiderivative size = 120 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=-\frac {4 a^2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^2 (3 A+2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (3 A+5 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

output
-4*a^2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2 
*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(3*A+2*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos( 
1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*B*(a^2+a^2*cos( 
d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/3*a^2*(3*A+5*B)*sin(d*x+c)/d/cos(d 
*x+c)^(1/2)
 
3.5.93.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.18 (sec) , antiderivative size = 736, normalized size of antiderivative = 6.13 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\frac {\cos ^{\frac {7}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \left (-\frac {(-A-4 B+A \cos (2 c)) \csc (c) \sec (c)}{4 d}+\frac {B \sec (c) \sec ^2(c+d x) \sin (d x)}{6 d}+\frac {\sec (c) \sec (c+d x) (B \sin (c)+3 A \sin (d x)+6 B \sin (d x))}{6 d}\right )}{B+A \cos (c+d x)}-\frac {A \cos ^3(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (B+A \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {2 B \cos ^3(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (B+A \cos (c+d x)) \sqrt {1+\cot ^2(c)}}+\frac {B \cos ^3(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (B+A \cos (c+d x))} \]

input
Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x 
]
 
output
(Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec 
[c + d*x])*(-1/4*((-A - 4*B + A*Cos[2*c])*Csc[c]*Sec[c])/d + (B*Sec[c]*Sec 
[c + d*x]^2*Sin[d*x])/(6*d) + (Sec[c]*Sec[c + d*x]*(B*Sin[c] + 3*A*Sin[d*x 
] + 6*B*Sin[d*x]))/(6*d)))/(B + A*Cos[c + d*x]) - (A*Cos[c + d*x]^3*Csc[c] 
*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 
 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Sec[d*x - ArcTan 
[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Si 
n[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*( 
B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (2*B*Cos[c + d*x]^3*Csc[c]*Hyper 
geometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d* 
x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c 
]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*S 
in[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(B + 
A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) + (B*Cos[c + d*x]^3*Csc[c]*Sec[c/2 + ( 
d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((HypergeometricPFQ[ 
{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]] 
]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[T 
an[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 
+ Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2 
*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin...
 
3.5.93.3 Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.03, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 3433, 3042, 3454, 27, 3042, 3447, 3042, 3500, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^2 (A \cos (c+d x)+B)}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {2}{3} \int \frac {(\cos (c+d x) a+a) (a (3 A+5 B)+a (3 A-B) \cos (c+d x))}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {(\cos (c+d x) a+a) (a (3 A+5 B)+a (3 A-B) \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a (3 A+5 B)+a (3 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {1}{3} \int \frac {(3 A-B) \cos ^2(c+d x) a^2+(3 A+5 B) a^2+\left ((3 A-B) a^2+(3 A+5 B) a^2\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {(3 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^2+(3 A+5 B) a^2+\left ((3 A-B) a^2+(3 A+5 B) a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{3} \left (2 \int \frac {a^2 (3 A+2 B)-3 a^2 B \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 (3 A+5 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (2 \int \frac {a^2 (3 A+2 B)-3 a^2 B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 (3 A+5 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (2 \left (a^2 (3 A+2 B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^2 B \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^2 (3 A+5 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (2 \left (a^2 (3 A+2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^2 B \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 (3 A+5 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (2 \left (a^2 (3 A+2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 (3 A+5 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 a^2 (3 A+5 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \left (\frac {2 a^2 (3 A+2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

input
Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]
 
output
(2*B*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2* 
((-6*a^2*B*EllipticE[(c + d*x)/2, 2])/d + (2*a^2*(3*A + 2*B)*EllipticF[(c 
+ d*x)/2, 2])/d) + (2*a^2*(3*A + 5*B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) 
)/3
 

3.5.93.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
3.5.93.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(512\) vs. \(2(162)=324\).

Time = 9.71 (sec) , antiderivative size = 513, normalized size of antiderivative = 4.28

method result size
default \(-\frac {4 \left (6 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A +2 B \right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (3 A +7 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (3 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+3 B \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) a^{2}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(513\)

input
int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
-4/3*(6*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A+2*B)*cos(1 
/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*(3*A+7*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(2*sin(1 
/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2* 
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2) 
)+2*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*EllipticE(cos(1/2*d*x+1/2* 
c),2^(1/2)))*sin(1/2*d*x+1/2*c)^2+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+3*B*(-2*sin(1/2*d*x+1/ 
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2 
*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*a^2/(-2*sin( 
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3 
/2)/sin(1/2*d*x+1/2*c)/d
 
3.5.93.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.75 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=-\frac {2 \, {\left (i \, \sqrt {2} {\left (3 \, A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} {\left (3 \, A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} B a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} B a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right ) + B a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x, algorith 
m="fricas")
 
output
-2/3*(I*sqrt(2)*(3*A + 2*B)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c)) - I*sqrt(2)*(3*A + 2*B)*a^2*cos(d*x + c)^2* 
weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*B* 
a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d 
*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*B*a^2*cos(d*x + c)^2*weierstrassZ 
eta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3 
*(A + 2*B)*a^2*cos(d*x + c) + B*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*c 
os(d*x + c)^2)
 
3.5.93.6 Sympy [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=a^{2} \left (\int A \sqrt {\cos {\left (c + d x \right )}}\, dx + \int 2 A \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx + \int A \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx + \int B \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx + \int 2 B \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx + \int B \sqrt {\cos {\left (c + d x \right )}} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c))*cos(d*x+c)**(1/2),x)
 
output
a**2*(Integral(A*sqrt(cos(c + d*x)), x) + Integral(2*A*sqrt(cos(c + d*x))* 
sec(c + d*x), x) + Integral(A*sqrt(cos(c + d*x))*sec(c + d*x)**2, x) + Int 
egral(B*sqrt(cos(c + d*x))*sec(c + d*x), x) + Integral(2*B*sqrt(cos(c + d* 
x))*sec(c + d*x)**2, x) + Integral(B*sqrt(cos(c + d*x))*sec(c + d*x)**3, x 
))
 
3.5.93.7 Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x, algorith 
m="maxima")
 
output
integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), 
x)
 
3.5.93.8 Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x, algorith 
m="giac")
 
output
integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), 
x)
 
3.5.93.9 Mupad [B] (verification not implemented)

Time = 16.27 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.63 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\frac {2\,A\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,A\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(cos(c + d*x)^(1/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2,x)
 
output
(2*A*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*A*a^2*ellipticF(c/2 + (d*x)/2 
, 2))/d + (2*B*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*a^2*sin(c + d*x)* 
hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c 
+ d*x)^2)^(1/2)) + (4*B*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c 
 + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*a^2*sin(c 
 + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/ 
2)*(sin(c + d*x)^2)^(1/2))